• Brainsinitaly © è un prodotto ONEFRAME

" The place where Italian science talks to the world "

QUANTUM LIFE

Quantum computers pave the way to study the shape of proteins.

“QUANTI” PER LO STUDIO DELLA VITA

I computer quantistici per prevedere la forma delle proteine

Il corpo umano è come un cantiere aperto, nel quale sono contemporaneamente all’opera centinaia di migliaia di diverse nanomacchine molecolari chiamate proteine. Ciascuna di queste biomolecole, che sono catene di amminoacidi alla base dell’organismo vivente, svolge una diversa funzione biologica, spesso in sinergia con altre proteine. Durante la loro formazione (processo di ripiegamento) o durante l’espletazione delle funzioni biologiche, le proteine modificano in maniera molto specifica la loro forma. In molti casi è possibile effettuare esperimenti che forniscono delle vere e proprie “fotografie” delle proteine con un livello di dettaglio atomico, ma solo quando queste si trovano nella forma stabile e biologicamente attiva. I processi dinamici legati ai cambiamenti di forma sono in buona parte ancora ignoti.
Comprendere questi meccanismi e prevedere il comportamento delle proteine è un passaggio fondamentale, ad esempio, per sviluppare cure mediche avanzate per vecchie e nuove malattie, da quelle più studiate (come cancro e malattie degenerative) a quelle emergenti (Covid-19), fino alle malattie rare.
Negli ultimi decenni sono stati fatti enormi passi avanti nello studio dei processi che coinvolgono i cambiamenti strutturali di proteine, facendo ricorso a simulazioni al calcolatore. Ora, i computer quantistici, sono uno strumento potente per svolgere osservazioni ancora più precise e complete, come appare evidente dallo studio di un gruppo di fisici dell’Università di Trento uscito su Physical Review Letters, una tra le più prestigiose riviste di fisica, pubblicata dal 1958 dalla American Physical Society.
«Per la prima volta, mostriamo come i computer quantistici possono essere utilizzati per comprendere con livello di dettaglio atomistico il funzionamento delle biomolecole» spiega Pietro Faccioli, autore dell’articolo scientifico assieme al collega Philipp Hauke e allo studente Giovanni Mattiotti. I ricercatori del Dipartimento di Fisica dell’Università di Trento in questo modo hanno sviluppato un metodo di calcolo per i cambiamenti di forma e di traiettoria delle proteine. Una svolta che ha implicazioni per la biologia molecolare, la farmacologia e le nanotecnologie.
I campi di applicazione non mancano. Individuare, ad esempio, i meccanismi di alcune proteine responsabili di processi neurodegenerativi può aiutare ad arginarne la proliferazione. Comprendere in che modo una proteina assume una determinata forma può aprire spiragli per utilizzare le nanomacchine già predisposte dalla natura per tagliare, correggere, bloccare geni difettosi o danneggiati.
«Il nostro contributo è stato riformulare il problema matematico alla base delle predizioni dei cambiamenti di struttura come un problema di ottimizzazione» sottolinea Pietro Faccioli. «I computer quantistici sono particolarmente indicati per risolvere i problemi di ottimizzazione perché sfruttano un affascinante fenomeno noto come delocalizzazione quantistica, che compare solo nel mondo microscopico» aggiunge Philipp Hauke.

    Università degli Studi di Trento Reference completa: Philipp Hauke, Giovanni Mattiotti, and Pietro Faccioli Phys. Rev. Lett. 126, 028104 – Published 14 January 2021

    Autore del post: Alessandra Saletti, Università di Trento

    Istituto di appartenenza: Università degli Studi di Trento

    Ruolo: Press office

    Doi originale: https://doi.org/10.1103/PhysRevLett.126.028104

    Link diretto alla fonte: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.028104

    Articolo Divulgativo in Inglese:
    2500

    Email: Contatta l'autore in merito alla ricerca